

Flexible Couplings

RINGSPANN® Registered Trademark of RINGSPANN GmbH, Bad Homburg

44

Why RINGSPANN Flexible Couplings?

No connection of shafts without clutches

It is a well-known fact that the connection of shafts is a lengthy, and therefore costly, operation of accurately aligning the respective machine parts.

With machine base plates and foundations made of sectional steel there is the additional need to compensate for the misalignment of individual components caused by the tightening of the fastening screws. Variations in heat expansion and sudden alterations of the foundation level can cause further problems to the mounting operation.

Even more serious are the failures from incorrectly mounted flexible couplings - under the influence of torque the radial forces produced by the displacement can result in overloaded bearings, excessive hest in the friction bearings, and broken shafts.

However, by using a RINGSPANN flexible coupling for shafts, excessive costs for fitting, loss of production and repair can be avoided.

Advantages of RINGSPANN Flexible Couplings

- · Excellent misalignment capability
- · Minimal radial forces
- Torsionally rigid
- · No stick-slip action
- · Compact design
- Small dimensions

Structure of RINGSPANN Flexible Couplings

The RINGSPANN flexible coupling is based on the reliable Oldham Principle and consists of two identical hub parts of steel or spherical graphite iron, as well as a flexible disc made of highly wear resistant plastic resin. The robust design of only three basic elements guarantees excellent reliability and easy mounting.

The driving dogs of the two hubs engage by sliding into corresponding slots of the flexible disc, the slots being offset by 90°, thereby compensating very large radial misalignments of the shafts, if necessary. Furthermore, the support dogs - offset by 90° to the driving dogs - can


compensate angular misalignments of up to 3°. The rotation movement is always transmitted angle true. The particularly large, low-stress transmission surfaces are not subject to any elastic distortion or play and therefore no fatigue.

Driving dogs and flexible disc should be greased with graphite paste or molybdenum disulphide as recommended in the operating instructions. This is not necessary if the couplings run in oil.

Care must be taken that the flexible couplings are not affected by undue axial forces caused, for example, by heat expansion of the shafts. If necessary, the coupling has to be mounted with axial tolerance between support dogs and flexible disc.

Service

RINGSPANN not only supplies flexible couplings, but is also available for comprehensive consultation. RINGSPANN offers the safety that you need.

Selection of RINGSPANN Flexible Couplings

Selection of RINGSPANN Flexible Couplings

The size of the coupling is selected according to the maximum torque requirement on the general formula:

$$M_1 = 9550 \cdot \frac{p}{n} [Nm]$$

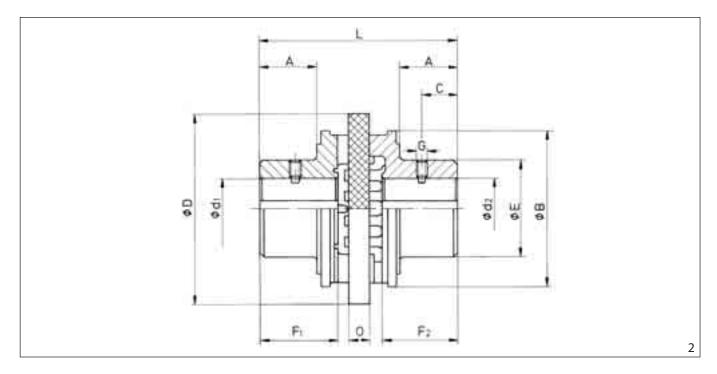
In this formula P (kW) is the power required for driving the machine, which is in most cases lower than the nominal power of the motor. n [1/min] is the speed of the coupling.

The torque requirement M_L calculated according to this formula is an average value, but in reality the torque transmitted through the coupling is irregular, according to the irregularity of the driving power and the machine. The maximum peak torque of the drive should be lower than the torque capacity of the selected coupling according to the table.

Where the precise irregularities of the torque are not known a service factor f should be applied.

$$M_{\text{max}} = 9550 \cdot \frac{p}{n} \cdot f [\text{Nm}]$$

This factor f is dependant on the type of drive and type of driven machine.


Servicefactor f

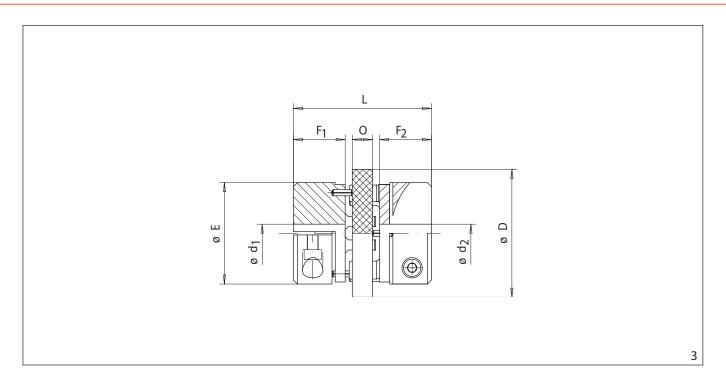
Type of driven Machine	Driven by										
	Belt drives, electric motors	Combustion engines 4 and 6 cylinders	Combustion engines 2 and 3 cylinders, single cylinder, steam engines	Single cylinder combustion engines							
belt drives, small generators, small ventilators, rotary blowers	1,5	1,7	1,9	2,2							
small hoists, larger ventilators, light machines for metal, wood and textile, small conveyors	1,8	2,0	2,2	2,5							
hoists for heavy loads, heavier conveyors. hanging conveyors, mixers, textile machines with high inertias	2,0	2,2	2,4	2,7							
presses, sheers, stumping machines, reciprocating pumps, calendars. Dan grinders. hammer mills	2,5	2,7	2,9	3,2							
welding generators. stone crushers. pinch roll drives, reciprocating compressors and reciprocating pumps without flywheels, rolling mills.	3,0	3,2	3,4	3,7							

RINGSPANN-Flexible Couplings L

Connection Shaft – Shaft with Keyways

Technical Data and Dimensions

Туре	Torque	Speed	Parallel	Rough		Finished		В	С	D	Е	F ₁ */F ₂ *	G	L	0	Inertia with	Weight
			misalign- ment	bore d		bore d ₁ and d ₂										with	rough
	max.	max.	max.	_ ~	min.	max.										J	bore
	Nm	1/min	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		mm	mm	kgm ²	kg
L 10	2	13 000	0,5	4,3	5	15	_	_	7	32	26	13	M4	35	6	0,0001	0,1
L 12	4	10500	0,6	5	6	18	_	_	10	40	32	16	M4	42	4	0,0002	0,2
L 16	8	8 4 0 0	0,8	7	8	25	_	-	10,5	50	40	18,5	M5	51	6	0,0003	0,38
L 20	16	6800	1,0	9	10	30	_	_	17	63	50	25	M6	64	6	0,0004	0,78
L 27	32	5 350	1,35	11	12	40	_	_	24	80	65	32	M6	85	8	0,0008	1,7
L 35	85	4100	1,75	15	16	35	33	90	25	110	53	42	M8	112	12	0,0013	1,9
L 42	190	3 400	2,1	19	20	42	41	110	30	135	66	53	M8	136	14	0,0039	3,7
L 50	500	2670	2,5	29	30	50	51	135	40	160	85	62	M10	159	16	0,0097	6,3
L 70	1 000	2 140	3,5	33	34	70	65	163	45	200	104	79	M12	200	20	0,0268	12,1
L 90	2000	1 700	4,5	48	50	90	81	202	60	250	150	100	M12	247	25	0,1110	28,9
L 110	4000	1 350	5,5	58	60	110	101	254	70	315	175	124	M12	312	32	0,2911	50,9
L 140	8 000	1 050	7	72	75	140	130	330	90	400	216	160	M12	402	40	0,9767	104


 $^{^{\}ast}$ Hub lengths F1 and F2 can be shortened with corresponding changes to dimensions A, C and L.

Please specify when ordering

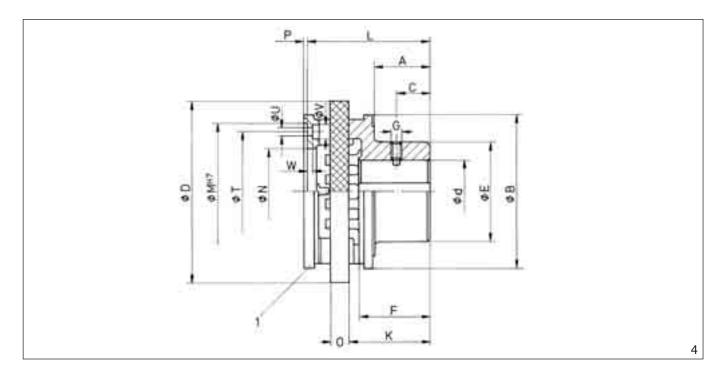
- Whether supply is required with rough bores as per catalogue or finished bore.
- If finished bore, give diameters d₁ and d₂. Tolerance of finished bores is H7. Keyways as per DIN 6885, p. 1 from finished bore size 6 mm.

RINGSPANN-Flexible Couplings LK

Connection Shaft – Shaft with Clamping Hubs

Technical Data and Dimensions

Type	Torque	Speed	Parallel	Rough	Finis	Finished		Е	F ₁ /F ₂	L	0	Inertia	Weight
			misalign-	bore	bo	bore							with
			ment	d	d ₁ ar	d ₁ and d ₂							rough
	max.	max.	max.		min.	max.						J	bore
	Nm	1/min	mm	mm	mm	mm	mm	mm	mm	mm	mm	kgm ²	kg
LK 10	2	13 000	0,5	4,3	5	10	32	26	13	35	6	0,0001	0,1
LK 12	4	10 500	0,6	5	6	14	40	32	16	42	4	0,0002	0,2
LK 16	8	8 400	0,8	7	8	20	50	40	18,5	51	6	0,0003	0,38
LK 20	16	6800	1.0	9	10	25	63	50	25	64	6	0.0004	0,78
LK 27	32	5 3 5 0	1,35	11	12	35	80	65	32	85	8	0.0008	1,7


Please specify when ordering

- Whether supply is required with rough bores as per catalogue or finished bored.
- If finish bored, give diameters d₁ and d₂. Tolerance of finished bores is H7.

RINGSPANN-Flexible Couplings LA

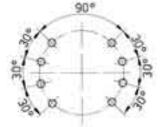
Connection Flange – Shaft with Keyway and Flange

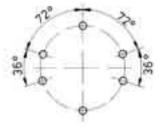
Technical Data and Dimensions

Туре	Torque	Speed	Paral.	Rough	Finis	shed	Α	В		D	E	E1)	G	К	1	M ^{H7}	N	0	D	т	U	V	W	Inertia	Weight	Din-
Туре	loique	Speed	mis-	bore		ore	_ ^				-	' '		l K	-	IVI	"		'	'	0	*	\ vv	ii ici da	with	hole
			align.		,	d																			rough	lmage
	max.	max.	max.	d	min.	max.																		J	bore	for
	Nm	1/min	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kgm²	kg	øT ²
LA 35	85	4100	1,75	15	16	35	33	90	25	110	53	42	M8	50	76,5	75	45	12	2,5	65	6,6	11	3,5	0,0011	1,3	1
LA 42	190	3 400	2,1	19	20	42	41	110	30	135	66	53	M8	61	90,5	90	52	14	2,5	75	6,6	11	4,5	0,0032	2,6	2
LA 50	500	2670	2,5	29	30	50	51	135	40	160	85	62	M10	71,5	105,5	100	65	16	4,5	88	9	15	4,5	0,0075	4,1	2
LA 50.1	500	2670	2,5	29	30	50	51	135	40	160	85	62	M10	71,5	105	125	76	16	3	108	9	15	5	0,0074	4,0	3
LA 70	1000	2 140	3,5	33	34	70	65	163	45	200	104	79	M12	90	131	135	90	20	4	115	11	18	5,5	0,0203	7,7	2
LA 90	2000	1 700	4,5	48	50	90	81	202	60	250	150	100	M12	111	162,5	170	104	25	4,5	150	11	18	7	0,0782	18,0	4
LA 110	4000	1 350	5,5	58	60	110	101	254	70	315	175	124	M12	140	204	200	146	32	5	180	14	20	5	0,2113	31,6	3
LA 140	8000	1 050	7	72	75	140	130	330	90	400	216	160	M12	181	265	250	157	40	5	225	18	26	8	0,7485	67,6	3

Keyways as per DIN 6885, p. 1. $^{1)}$ The hub length F can be shortened with corresponding changes to dimensions A, C, K and L.

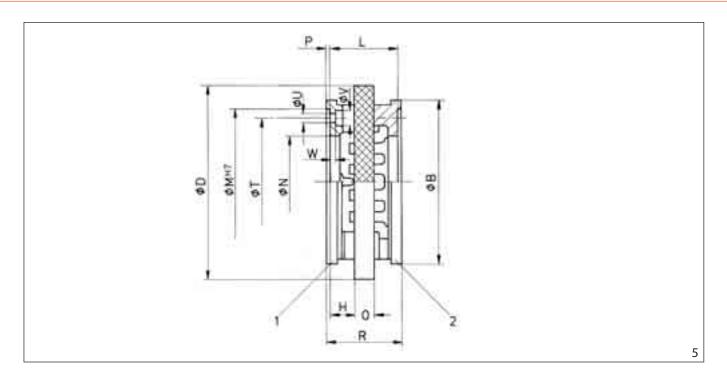
Please specify when ordering:


- Whether supply is required with rough bore as per catalogue or finished bore.
- If finished bore, give diameter d. Tolerance of finished bore is H7.


Pinhole Image 1

Pinhole Image 2

Pinhole Image 3



Pinhole Image 4

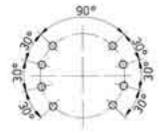
²⁾The pinhole images refer to coupling flange 1.

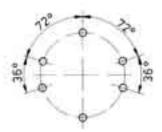
RINGSPANN-Flexible Couplings LF

Connection Flange – Flange with Flanges

Technical Data and Dimensions

Туре	Torque	Speed	Parallel	В	D	Н	L	M ^{H7}	N	0	Р	R	Т	U	V	W	Inertia	Weight	Pin-
			misalign-																hole
			ment																Image
	max.	max.	max.														J		for
	Nm	1/min	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kgm ²	kg	øT ¹⁾
LF 35	85	4100	1,75	90	110	14,5	41	75	45	12	2,5	46	65	6,6	11	3,5	0,0009	0,7	1
LF 42	190	3 400	2,1	110	135	15,5	45	90	52	14	2,5	50	75	6,6	11	4,5	0,0026	1,4	2
LF 50	500	2670	2,5	135	160	18	52	100	65	16	4,5	61	88	9	15	4,5	0,0053	1,9	2
LF 50.1	500	2 670	2,5	135	160	17,5	51	125	76	16	3	57	108	9	15	5	0,0051	1,7	3
LF 70	1 000	2 140	3,5	163	200	21	62	135	90	20	4	70	115	11	18	5,5	0,0138	3,2	2
LF 90	2000	1 700	4,5	202	250	26,5	78	170	104	25	4,5	87	150	11	18	7	0,0453	7,0	4
LF 110	4000	1 350	5,5	254	315	32	96	200	146	32	5	106	180	14	20	5	0,1314	12,3	3
LF 140	8 000	1 050	7	330	400	44	128	250	157	40	5	138	225	18	26	8	0,5203	31,2	3


 $^{^{1)} \}mbox{The pinhole images refer to coupling flange 1. The pinhole images are offset by <math display="inline">90^{\circ}$ for flange 2.



Pinhole Image 2

Pinhole Image 3

Pinhole Image 4

Freewheels

Backstops

Automatic protection against reverse running of conveyor belts, elevators, pumps and fans.

Catalogue 88

Overrunning Clutches

Automatic engaging and disengaging of drives

Catalogue 80

Indexing Freewheels

For gradual feed of materials.

Catalogue 80

Housing Freewheels

Automatic engaging and disengaging for multi-motor drives for installations with continu ous operation. Catalogue 80.1

Freewheel Elements

Cage Freewheels, Sprag Sets and Freewheel Chains

Catalogue 89

Brakes

Industrial Disc Brakes

Manually actuated manually released.

Catalogue 46

Industrial Disc Brakes

Spring actuated pneumatically, hydraulically or manually released.

Catalogue 46

Industrial Disc Brakes

Spring actuated electromagnetically released.

Catalogue 46

Industrial Disc Brakes

Pneumatically actuated spring releasé

Catalogue 46

Industrial Disc Brakes

Hydraulically actuated spring released.

Catalogue 46

Torque and Force Limiters

Torque Limiters with Screw Face

protection for tough operating conditions.

Catalogue 45

Torque Limiters with Rollers

With double or single Rollers. Through ratcheting or disengaging, also for 360° svnchronous running.

Catalogue 45

Torque Limiters with Balls

Reliable overload protection with maximum response accuracy. Also backlash free.

Catalogue 45

Torque Limiters with Friction Linings

RIMOSTAT Torque Limiter for constant torque Belleville Spring Torque Limiter for simple

Catalogue 45

Force Limiters

Reliable axial overload protection in piston rods.

Catalogue 49

Couplings and Clamping Clutches

Flexible Couplings

Large, allowed radial and angular misalignements Minimum resiliency.

Catalogue 44

Flange-Couplings

Rigid, easily removable shaft coupling with no clearance cone clamping

E04.020

Clamping Clutches

For the automatic coupling of rolls. Fast, safe and free from slipping connection.

Safety Clamping Units pneumatically released

For secure and precise positioning of piston rods

E01.023

Safety Clamping Units hydraulically released

For secure and precise positioning of piston rods

Catalogue 32

Shaft-Hub-Connections

Two-part Shrink Discs

External clamping connection. Advantages: Simple, secure mounting even without torque wrench.

Catalogue 31.1

Three-part Shrink Discs

External clamping connection for the fastening of hollow shafts on solid shafts

Catalogue 31

Cone Clamping Elements

For shaft-hub connections. High torques with small dimensions.

Catalogue 31

Star and Clamping Discs

Ideal for shaft-hubconnection for frequent release

E03.023

Star Spring Washers Axial spring element for preloading of ball bearings.

Catalogue 20

RINGSPANN®

Workholding Technology

Precision Clamping Fixtures

Standard Parts for **Clamping Fixtures**

The RINGSPANN-System for the manufacture of your own precision clamping fixtures.

Catalogue 14

Standard Clamping **Fixtures**

Standard

Special Clamping **Fixtures**

Custom made specific clamping problems.

Collet Mandrels

Universal, cost effective standard series. Fast collet change to other clamping diameters

Catalogue 15

Hydraulic Expanding **Clamping Tools**

Mandrels and chucks with high concentricity. Clamping several workpieces in one process possible.

Catalogue 16

RINGSPANN GmbH

Schaberweg 30-34 61348 Bad Homburg Telefon +49 6172 275-0 +49 6172 275-275 Telefax

www.ringspann.com mailbox@ringspann.com